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A central role in the mechanism of the self-sustained oscillations of the flow about 
cavity-type bodies is played by the reattachment edge. Experimentally it has been 
found that periodic pressure pulses generated on this edge are fed back to the origin 
of the shear layer and cause the production of discrete vortices. The oscillations have 
been found to be suppressed or attenuated when the edge has the shape of a ramp 
of small angle, or when it is properly rounded. To clarify the role of the shape of the 
reattachment edge in the mechanism of the oscillations, a mathematical model is 
developed for the vortex-edge interaction. In  this model the interaction of one 
discrete vortex, imbedded within a constant-speed parallel flow, with the reattach- 
ment edge is studied. Two typical shapes of the reattachment edge are examined; 
a ramp of variable angle and an ellipse. The main conclusion of the present analysis 
is the strong dependence of the pressure pulses, that are induced on the surface of 
the edge, on the specific shape of the edge. The pressure pulses on reattachment edges 
with shapes that give rise to steady flows have been found to be of insignificant 
amplitude. On the other hand, when the reattachment edge has a shape that is known 
to result in oscillating flow, the induced pressure pulses are of very large amplitude. 
Intermediate values of the pressure are found for configurations known to stabilize 
partially the flow. The present results indicate that, for the establishment of the 
oscillation, the feedback force generated by the vortex-edge interaction must have 
an appropriate value. The feedback force may be eliminated if the shape of the lip 
of the edge is properly designed. 

1. Introduction 
It is known that the impingement of a shear layer on a boundary may be of an 

unsteady nature, characterized by the periodic oscillation of the shear layer and the 
production of discrete sound. Among the diverse configurations that give rise to this 
unsteady character are the edge tone, the flow past cavities and the impingement of 
a planar or an axisymmetric jet on a plate. A classification of these flows has been 
made by Rockwell t Naudascher (1979). They observe that, regardless of the working 
fluid and flow speed, all of the jet-edge oscillations exhibit qualitatively similar 
variations of frequency with change in impingement length and flow speed and similar 
hysteresis effects. 

Although the details of the mechanism that induces these self-sustained oscillations 
are not yet known, it is believed that an essential role is played by the reattachment 
surface, where periodic pressure disturbances are produced and are fed back to the 
origin of the inherently unstable free shear layer. There, the pressure disturbances 
periodically force the shear layer, enhancing its latent coherent structure, so that 
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FIGIJRE 1. Cavity-type bodies. 

regular large-scale vortices are produced. The interaction of these vortices with the 
reattachment surface induces the pressure disturbances. 

Early optical detection of the vortical structures of a self-oscillating shear layer 
was provided by Brown (1937) in his classical smokc-visualization study of the 
edge-tone, and by Rossiter (1964) who studied the cavity oscillations. More details 
about the generation of these vortices and their interaction with the reattachment 
surface were revealed recently, after the work of Brown & Roshko (1974) on the 
large-scale structure of the turbulent flows and following the development of modern 
techniques for the detection of coherent structures in shear flows. The work of 
Rockwell & Knisely (1979), of Ho & Nosseir (1981) and of Ziada & Rockwell (1982) 
are typical. 

Ho & Nosseir (1981), studying a high-speed subsonic jet impinging on a flat plate, 
were able to  detect the two branches of the feedback loop: the downstream convected 
coherent structures and the upstream propagating pressure waves, which are 
generated by the impingement of the coherent structures on the plate. Ziada & 
Rockwell (1982) in their study of the oscillations of an unstable mixing layer 
impinging upon a wedge have measured the induced force on the wedge by the passing 
vortices, using a balance and hydrogen-bubble visualization. The interaction of a 
single vortex, or of patterns of vortices, with a corner has been studied theoretically 
by Conlisk & Rockwell (1981). They have verified the existence of a pressure pulse 
induced a t  the edge as one vortex approaches it.  

One basic feature of the feedback mechanism worthy of theoretical study, is the 
effect of the shape of the reattachment surface on the amplitude of the induced 
pressure pulses. Such an analysis will be useful in understanding the experimentally 
observed dependence of the amplitude of oscillation of a shear layer on the shape of 
the reattachment surface, for the bodies shown in figure 1 .  Indeed, it has been found 
that a significant suppression, or even a complete elimination, of the oscillation is 
possible if the shoulder of the reattachment surface of these cavity-type flows has 
a shape that does not deflect considerably the impinging shear layer. A brief review 
of the available experimental data will be presented in $2. 

The object of the present work is the aforementioned problem. For the mathematical 
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modelling the interaction of one line vortex, embedded within a constant-speed 
parallel flow, with the reattachment surface is examined. The classical method of 
conformal mapping is applied on two typical shapes of reattachment surface : a ramp 
of variable angle and an ellipse. The analysis provides the trajectory of the vortex 
and the corresponding pressure pulses induced on selected points of the edge 
(reattachment surface). 

It will be shown that the amplitude of the pressure pulses depends strongly on the 
shape of the reattachment surface. More specifically, edges with shapes that result 
in steady flows, according to  the experiments, are characterized by pressure pulses 
of very low amplitude. On the other hand, the pressure pulses on edges known to 
induce oscillating flows are of very high amplitude. The remarkable similarity that 
exists between the influence of an impingement edge and the influence of sound 
excitation a t  a discrete frequency, on enhancing the organization of a free shear layer, 
is used to explain this important conclusion. 

2. Suppression of cavity-type oscillations 
The term ‘cavity-type’ used in this work applies t o  bodies similar to those shown 

in figure 1. They are characterized by the existence of a planar or an  axisymmetric 
mixing layer, which envelops the separation area formed between the leading and 
the trailing edge. The possibility of suppressing, or even eliminating, the self-induced 
oscillations of the shear layer by various techniques is a common characteristic of 
cavity-type bodies. All the bodies of figure 1 are included in the classification of 
Rockwell & Naudascher (1979) except for the axisymmetric concave body : however, 
one of the two modes of instability that have been observed when the high-speed flow 
about a concave body is unsteady is similar to the classical oscillation of the cavity 
flows (Panaras 1981). The techniques which have proved successful for the suppression 
of the oscillation of the flow about a cavity or about a concave body are similar. 

In  the case of the cavities, the majority of the experimental work concerns 
appropriate modifications of the geometry of the rectangular cavity. These modific- 
ations have been applied to the leading or to the trailing edge of the cavity, or to 
both. The rounding of the lip or the use of ramps or offsets (figure 2) are the main 
changes to  the trailing edge tested. The tests have been performed in incompressible 
or supersonic flows. All of these modifications have attenuated, to  an extent, the 
amplitude of oscillations; the use of offsets being the least successful. The most 
comprehensive studies are those of Ethembambaoglu (1973), Franke & Carr (1975) 
and Heller & Bliss (1975). Rossiter (1964) has found that installation of leading-edge 
spoilers is very effective in reducing the magnitude of the pressure fluctuations. 

For the case of axisymmetric concave bodies Wood (1962), testing spiked cones 
at hypersonic Mach numbers, discovered that the separated flow remains steady when 
the cone angle is smaller than the conical detachment angle. Evidently, this is 
equivalent to the use of ramps in the cavities. Also, the present author (Panaras 1977) 
has discovered experimentally at the Von Karman Institute that  a stabilizing 
parameter of the oscillation mode is the proper rounding of the shoulder of a concave 
body. The radius of curvature of the shoulder required for the stabilization is scaled 
to the thickness of the reattaching shear layer. A radius equal to only one-tenth of 
the diameter of the afterbody proved effective in stabilizing the oscillation about a 
concave body at a Mach number of 6.  Finally, tripping the shear layer by covering 
the tip of the spike of spiked cylinders with sand or metallic particles proved very 
effective in suppressing the amplitude of oscillations. 
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The problem considered in this paper is closely related to the shear-layer oscillations 
between the main stream and the plenum chamber of an open jet of a ventilated 
(slotted or perforated) wind tunnel. Mabey (1971) demonstrated how the shear-layer 
oscillations could be attenuated, either by covering the slots with flat perforated 
screens or by rounding the downstream corner of the plenum chamber at the entry 
to  the diffuser. 

To conclude, according to the experimental evidence, the self-induced oscillations 
of the flow about a body similar to  one of those shown in figure 1, may be 
attenuated if: 
(a) The shoulder of the reattachment edge is rounded or, if sharp, has a small 

inclination angle or even lies below the leading edge (for cavities). 
(b) The shear layer is tripped by means of spoilers, sand, etc. 
Concerning the role of the tripping, it will be assumed in this paper that, by affecting 

the state of the otherwise laminar shear layer, the large-scale vortices formed have 
less energy. Indeed as Roshko (1976) points out, much of the evidence suggests that 
any important effects of Reynolds number appear indirectly through conditions 
affecting transition rather than through the direct action of viscosity on the 
developing turbulent structure. Browand & Latigo (1979), studying the effect of the 
initial boundary layer upon the downstream growth of the turbulent mixing layer 
between two streams, concluded that if the mixing layer is tripped by a wire its 
large-scale structures are relatively suppressed. Kibens (1980) also observed the 
absence of highly energetic discrete vortices in the shear layer which envelops the 
potential core of a jet, if the shear layer is turbulent. Finally, Chandrsuda et al. (1978) 
mention that recent experiments strongly suggest that  the Brown-Roshko structures 
will not form if the initial mixing layer is turbulent. 

I n  the next section a simple, incompressible and two-dimensional model will be 
described for the study of the interaction of a discrete vortex with a reattachment 
edge. The shape of the edge will be variable. Thus, the effect of the geometrical 
parameters which, if they are of proper value, stabilize the otherwise oscillating shear 
layer, will be studied. Considering the existence of a common mechanism that induces 
the shear-layer oscillation, i t  is assumed that the results of the present analysis are 
applicable, qualitatively, to all the cavity-type bodies of figure 1. 
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3. Description of the model 
It is regular practice, in the study of the interaction of one or more vortices with 

a surface, for the dimensions of the vortices to be ignored. Crighton (1975) reviews 
the case of the impact of a pair of line vortices of opposite circulation upon a rigid 
plate and the case of the motion of a line vortex around the edge of a rigid half-plane. 
The calculated pressure field along the surfaces, in these studies, is used for the 
estimation of the distant sound field by application of the method of matched 
asymptotic expansions. The results are similar to those obtained by the Lighthill 
quadrupole model. The purely hydrodynamic cases of the motion of pairs of line 
vortices through slits in walls and out of channels, and of the motion of a line vortex 
over an inclined flat plate, are reviewed by Saffman & Baker (1979). Also, in the 
vortex-corner interaction ofConlisk & Rockwell (1981), mentionedin the introduction, 
the assumption of line vortices is made. 

Some reservations have been expressed about the simplification of ignoring the 
finite size of the vortices. The accuracy of the estimated trajectories is questioned. 
However, Saffman & Baker (1979) state that the centroids of the vortices approach 
an asymptote monotonically with trajectories qualitatively similar to those of line 
vortices. Another critical deficiency of this simplification, according to Conlisk & 
Rockwell (1981), is the inability to accommodate the redistribution of the vorticity 
and the possible severing of the vortices. However, the same authors note that, 
according to the experimental data of Rockwell & Knisely (1979), this possible 
redistribution and severing does not occur until the vortex is very close to, or at ,  the 
impingement surface. In  addition, the distortion of a vortical structure is limited to 
a domain which is less than the characteristic vortex diameter upstream of the corner. 
Furthermore, they mention that details of the vortex distortion at impingement 
should not substantially influence the trajectories of vortices that are not severed, 
or clipped, by the corner. Finally, by comparing experimental and calculated vortex 
trajectories, Conlisk & Rockwell have found that use of a sufficiently weak vortex 
strength in the line-vortex model allows a reasonable approximation of the trajectories 
of the laboratory vortices. 

The success of the aforementioned studies encourages the application of the 
line-vortex model in the present case. The method of complex transformations is used. 
The model is shown in figure 3, in the physical and in the transformed plane. Two 
special shapes of the edge will be examined, a ramp of variable angle ($3.1) and an 
ellipse of variable ratio of semi-axes ($3.2). 

In  the transformed plane the complex velocity potential at a point A is given by : 

r A-A, 
2x A-X, ’  

F(h) = U,A+i-ln- 

where r a n d  A, are respectively the strength and the time-dependent position of the 
vortex. 

In order to obtain the velocity field in the physical plane, knowledge of the 
transformation z = f ( A )  is necessary. Then the velocity field is given by the equation: 

where the velocities have been non-dimensionalized on U,, the lengths on edge 
height b, and K = r / U ,  b. 
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FIGURE 3. The model of the flow. 

Equation 2 is valid everywhere except a t  the vortex position A,. For the calculation 
of the velocity of the vortex, Routh’s rule must be used (Clements 1973; Conlisk & 
Rockwell 1981), leading to:  

For the computation of the trajectory of the vortex, from one given initial position 
upstream of the edge, the following equations will be solved numerically at successive 
small time steps At : 

Since the velocity components u,, vo are given in terms of the variable A, and not 
of zo (3), inversion of the transformation z = f ( A )  is necessary. It will be shown in $3.2 
that  this inversion is quite simple in the case of the ellipse. However, in the case of 
the ramp, the transformation is expressed as a hypergeometrical series and the 
inversion can only be done numerically. 

For the purpose of the present study i t  is necessary to estimate the pressure pulse 
induced on the edge by a vortex during its movement along its trajectory. An 
appropriate pressure coefficient that  contains only the effect of the vortex and not 
of the parallel stream is the following one : 

Equation (2) is used for the calculation of the velocity components u, v assuming 
that there is no vortex in the flow ( K  = O ) ,  while the components uK, vK  include the 
vortex term ( K  + 0). The term a+/at denotes the non-dimensional unsteady 
potential. 

It is evident from (2) and (5) that  the pressure coefficient tends to  zero when the 
vortex is located far upstream of the edge ( I A, I % 1). 

The pressure coefficient will be estimated at some specific points along the edge, 
so that the distribution of the amplitude of the pressure pulses will be investigated. 
The points with y-coordinate 0.1,0.4,0.6,0.8,0.95 have been selected for this purpose 
and the subscripts 1,2, . . . ,5 have been assigned to these points correspondingly. 

For the solution of the equations a PRIME 550/II computer was used, while the 
graphical presentations of the results were printed in a CALCOMP 1051/907 plotter. 
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3.1. Interaction of a vortex with a ramp 

For the study of the interaction of a vortex with a ramp of angle a (figure 4) the 
following Schwarz-Christoffel transformation (Spiegel 1964) may be used : 

The value of C can be expressed in terms of the gamma function using the fact that 
z = a when h = 1. It is found that:  

( 7 a )  

Considering various properties of the gamma function and setting S = a/n,  i t  can be 
shown that : 

If g = At: and the z is non-dimensionalized by b, the transformation (6) becomes: 

For the calculation of this integral the hypergeometric Gauss series included in the 
tables of Abramowitz & Stegun (1970) are used. This series is defined by the equation : 

F(d,  e ;  f; h )  = 
'(f) s' te-1( 1 - h)(f-e-1) ( 1  - ht)-d dt .  ( 9 )  

' (e ) ' ( f -e )  0 

The hypergeometric series is valid for Re (f) > Re (h)  > 0 and for all values of h, 
except for a cut along the real axis from 1 to a. Its  expression depends on the value 
o f lh l :  

for Ihl < 1: 

de d(d+1)e(e+1)h2+. . .  . , 
f ( f + 1 ) 2 !  

F ( d , e ; f ; h ) =  l+7h+ 
f l .  

f o r I h l > , l :  

F(d,  e ;  f; h)  = r ( f ) r ( e - d )  ( -h)-d F (d, d +  1 -f; d+ 1 - e ;  m w- 4 
r ( f ) r ( d - e )  ( - h)-e F ( e ,  e + 1 -f; e + 1 -d ; 
' (4 m- e) 

+ 
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For the application of the hypergeometric series on the transformation (8) the 
following equivalence is used : 

d = 6, e = a++, f = S+%, h = h2. 

The ha1 result, after several manipulations, is: 

for lhl < 1 :  

For the numerical calculation of the above series for any value of the angle 
parameter S i t  is sufficient to  consider only a few terms. The transformations are very 
accurate everywhere except at the region of I A I = 1 .  Also, the derivatives are easily 
estimated. These transformations are developed for the first time in this paper. 

II: 
If a+O, a+-, and (6) is reduced to:  

2 

This equation has also been used because of its simplicity. 
For the inversion of the transformation, the complex and the real part are 

separated and then the resulting system of equations is solved numerically by 
applying the method of Newton described in the algorithm (2.13) of Conte & de Boor 
(1972). Difficulties in finding the zeros of the system of equations have been 
experienced a t  some points near the origin of the axis for a > 60'. 

A typical example of the application of the present method to the calculation of 
the interaction of a discrete vortex with a ramp is shown in figure 5.  The dashed line 
denotes the trajectory of the vortex, while the numbered solid lines indicate the value 
of the pressure coefficient at the correspondingly numbered points of the ramp. 

It is observed in figure 5 that, as the vortex approaches the ramp, the induced 
pressure on its surface increases, initially very slowly, and then i t  rises rather abruptly 
when the vortex reaches the vicinity of the ramp. After reaching the maximum value 
the pressure pulse on each point starts to fall. The amplitude of the pressure pulses 
is quite small a t  the base of the ramp, but i t  becomes very large a t  its shoulder. 

The small discontinuities observed in some curves are due to the shifting of the 
calculation from one branch of the transformation function (equation 13) to  the other 
(equation 12). This shifting takes place at the point I A, I = 1, where the transformation 
is not very accurate. 

3.2. Interaction of a vortex with an ellipse 

The ellipse is quite an appropriate geometrical figure for the study of the interaction 
of a vortex with a curved surface. It is easily transformed into a piece of straight 
line on the h-plane by using an  intermediate transformation into a circle on the g-plane 
(figure 6) .  

The intermediate transformation of the ellipse into the circle, non-dimensionalized 
by b ,  is: 

(15) 
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FIGURE 6. Transformation of an ellipse. 

where : 
A -  1 a 

P = = ’  A + 1  b ‘  
q = -  A2,  A = -  A + 1  

The transformation of the circle into the straight line is: 

h =1(9+;). 2 

Then the required transformation function z = f ( h )  and its derivatives are found to 
be : 

P g 2 - q .  f ’ (h )  = - - , 
9--A 9 

The numerical calculation of a point z, is easily done in steps, separating the real 
from the imaginary part, if the corresponding point A,, in the h-plane, is known. 
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3.3. Variation of the unsteady potential 
The non-dimensional potential function of the flow model is the real part of (1)  : 

The temporal variation of this term will be estimated a t  the points A, ,  A,, . . ., A, 
along the edge, during the motion of a vortex of strength K .  Evidently, only the 
second term contributes to  the unsteady potential. It is estimated numerically by 
using the difference scheme : 

More sophisticated schemes would result in higher accuracy. However, the computer- 
program memory requirements would be increased. For improving the accuracy of 
the calculations, a variable time step has been applied, with a much smaller value 
at the vicinity of the edge, where the unsteady potential exhibits significant values, 
rather than upstream of it. 

The variation of the unsteady potential at the point 5 of the edge, for various values 
of the ramp angle and for an ellipse (a/b = 3.0), is shown in figure 7 for K = 0.5. It 
is observed that the unsteady potential always takes positive values, i.e. it tends to 
reduce the pressure induced on the edge by the passing vortex, see (5). Also its 
maximum value depends strongly on the shape of the edge. Besides, i t  has been found 
that near the base of the edge the unsteady potential takes very small values. 
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FIGURE 8. Pressure pulses along a ramp of 30". 

4. Application of the method 
The various parameters that have been found experimentally to affect the 

behaviour of the flow about a cavity-type body will be examined in this section, by 
using the mathematical model described previously. These parameters are : the shape 
of the reattachment edge; the initial y-coordinate; and the strength of the vortex. 

According to Conlisk & Rockwell (1981) the range of the non-dimensional strength 
of vortices generated in cavity flows in laboratory experiments is K = 0.14.6. These 
values will be used in the present work. 

4.1. Effect of the shape of the edge 

The optimization of the shape of the reattachment edge has been found to be the 
most effective means of suppressing the self-excited oscillations. A ramp of small angle 
is a very efficient shape in this sense. In figures 8 and 9 the trajectories of a vortex 
of strength K = 0.5 and the induced pressure fields along ramps of 30° and 90" angles, 
respectively, are shown. 

When comparing figures 5, 8 and 9 one may see that, if the ramp angle increases, 
the trajectory of the vortex approaches the edge and the induced pressure pulses at 
the shoulder increase abruptly. Thus, for a = 90" the amplitude of the pressure pulse 
at  point 5 of the ramp is almost an order of magnitude higher than the amplitude 
at  the equivalent point of a ramp with a = 30". It is noted here that, according to 
the experimental evidence, the flow about cavities equipped with reattachment ramps 
of a = 30" is steady, while the flow about regular rectangular cavities oscillates. 

In all cases shown in the aforementioned figures, the amplitude of the pressure 
pulses is significant only at the edge of the ramp, while i t  has low values at  its base. 
This feature suggests that for the suppression of the self-excited oscillations of the 
flows about the bodies shown in figure 1, i t  is sufficient to optimize only the lip of 
the reattachment surface and not its base. This rule has already been empirically 
applied in various experimental studies. 
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The small value of the width of the pressure pulses at the lip of the edge is another 
remarkable feature of the pressure field (figures 5,9) .  For example it is seen in figure 9 
that,  if the vortex lies upstream of the edge at a distance equal to  its height 
(x = - 1 .O) ,  the induced pressure is reduced to half of its maximum value. If the vortex 
lies further upstream, a t  x = -2.0, its contribution to the pressure pulses is only 
one-sixth of the maximum value. Thus, the contribution of a vortex to the induced 
pressure field a t  the edge is reduced very abruptly when its distance from the edge 
is increased. If a row of vortices is considered, i t  seems then that a small spacing or 
wavelength A is required for the production of discrete pulses. In this case the 
mean value of the pulses will be greater, because of the contribution of the other 
vortices. 

For the definition of the minimum wavelength above which pressure pulses are 
generated, the combined effect of all the vortices of the row must be considered. 
However, from the dynamics of the interaction of one vortex (figures 5, 9) the 
approximate value m = A/b < 1 may be assumed. Besides, according to Ziada & 
Rockwell (1982), the length of a cavity is connected to the wavelength by the relation 
L = An, where n is an integer. Thus the following useful equation is derived : 

T 

L 
- = nm. 
b 

This equation states that  the critical length of a cavity for the onset of oscillatioiis 
(n = l) ,  and for the appearance of higher modes (n  = 2,3,  ...), depends linearly on 
the appropriate value which the spacing of the generated vortices should have so that 
discrete pulses will be induced a t  the reattachment edge. The definition of the 
appropriate value of the parameter m and its dependence on the initial conditions 
of the flow are outside the scope of this work and of the capability of the computer 
program used. 

The proper rounding of the reattachment edge is another successful means of 
suppressing the self-excited oscillations of cavity-type flows. 
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FIQURE 10. Pressure pulses along a circle. 
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For the study of the effect of a curved edge on the amplitude of the induced pressure 
pulses, two cases of vortex-ellipse interactions are shown in figures 10, 11 for ratio 
of ellipse axis equal to 1.0 and 3.0. In  both cases the strength of the vortex is K = 0.5. 
It is noted that the flow about all these ellipses should be non-oscillating, which is 
because the non-dimensional radius of curvature at their edges is somewhat greater 
than the value +,, which has been experimentally found to result in steady flows 
(see 92). 

It is remarkable that, though in these figures a rather broad range of curvature 
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FIGURE 12. The effect of the initial vertical distance of the vortex from the edge on the 

amplitude of the pressure pulses, for ramps of a = 90". 

of the lip of the reattachment surface is represented, nevertheless the amplitude of 
all the pressure pulses is very small compared to the ones of the rectangular cavity 
(figure 9). Their maximum value is about equal to  the one observed on the ramp of 
a = 30". 

4.2. Effect of geometrical offsets 

The lowering of the trailing edge of a rectangular cavity is one technique effective 
to  some degree in attenuating the shear-layer oscillations, though not so successful 
as the use of ramps or the rounding of the edge. Ethembabaoglu's (1973) experimental 
data lead to an estimation of a 30 yo reduction of the cavity pressure fluctuations for 
a 20 yo offset of the leading edge. 

For studying this effect here, the initial vertical distance of the vortex is used as 
a parameter. The results of such a calculation are shown in figure 12. It is observed 
that the amplitude of the pressure pulses depends strongly on this parameter. More 
specifically, if the vortex initially lies below the lip of the edge (yo < 1.0) the pressure 
amplitude is greater than when it lies above the lip (yo > 1). It is noted in figure 12 
that the rate of change of the amplitude of the pressure is higher for values of yo < 1.  

The curves of figure 12 indicate that the forcing mechanism has small intensity 
when, according to the experimental evidence, the amplitude of the oscillations is 
small. It is also seen that, in the case of the rectangular cavity, the level of the forcing 
function does not reach the low values observed in the oscillation-free case of the ramp 
of 30°, even if the offset distance of its leading edge takes very high values (yo = 1.4). 

However, it is evident that, if the trailing edge has the shape of a ramp, the 
application of offset may have a more profound effect on the suppression of the 
oscillations. 
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FIGURE 13. The effect of the strength of the vortices on the 
amplitude of the pressure pulses, for ramps of a = 90". 

4.3. Effect of the strength of the vortices 

The strength of the interacting vortices is a basic parameter of the present model. 
Its effect on the induced-pressure pulses is shown in figure 13 for the case of the 
vertical plate (a = 90'). It is observed that, if the strength of the vortices is small 
(K = 0.10), the pressure pulses have the same order of magnitude as those induced 
on an oscillation-free configuration (a small-angle ramp or an ellipse) but with vortices 
of much higher strength. 

As has already been mentioned in $2, it may be assumed that small values of the 
strength of the discrete vortices may simulate the existence of spoilers in an 
appropriate position of a rectangular cavity or of a concave axisymmetric body. These 
mechanisms have proven quite effective in reducing the oscillations. The results of 
figure 13 seem to enforce the hypothesis concerning the role which the spoilers play 
in the reduction of the oscillations. Still, comprehensive laboratory measurements are 
required to validate this evidence. 

5. Discussion and conclusions 
The strong dependence of the pressure pulses, that are generated by the vortex- 

edge interaction, on the specific shape of the edge is the main conclusion of the present 
analysis. More specifically, i t  has been found that the induced pressure pulses on 
ramps of small angle or ellipses have very small amplitude, even for large values of 
the strength of the interacting vortices. On the other hand, the pressure amplitude 
on steep ramps is very large. 

Also, i t  has been shown experimentally that the flow about the cavity-type bodies 
shown in figure 1 is steady when their trailing edge has the shape of a ramp of small 
angle or when it is rounded, while the flow is oscillating when the ramp angle is large. 

The above comparison indicates that, for the establishment of sustained oscillations 
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in a cavity, the existence of a periodic feedback force of certain value is necessary. 
To explain this, recourse to the experimental evidence is required. To our knowledge 
no one has studied experimentally the effect of the geometry of the reattachment edge 
of a cavity on the development of the structure of the shear layer. 

However, detailed studies have been performed on the influence of sound excitation 
of variable amplitude, at a discrete frequency, on enhancing the organization of a 
free-shear layer. Experimental evidence seems to support the view that similarity 
exists between these types of flow. This similarity was discovered by Rockwell & 
Knisely (1979) when they compared the velocity spectra with and without insertion 
of the reattachment edge of a cavity, to those measured by Miksad (1972) in a 
non-impinging shear layer with and without application of sound at  a discrete 
frequency. 

Clear evidence of the role of the level of acoustic forcing in the development of a 
laminar low-speed shear layer has been provided by Freymuth (1966). He has 
discovered that, the lower the level of forcing, the longer is the length of the shear 
layer required for the growth of the instabilities to the saturation limit and, 
consequently, for the appearance of organized vortices. 

A similar conclusion was reached very recently by Gharib (1983). One of the 
objectives of his investigation was to study the receptivity of a cavity shear layer 
to  externally imposed disturbances, for a cavity length less than the one required for 
the onset of self-sustained oscillations. His flow-visualization pictures showed that, 
while in the oscillation mode periodic vortices are produced near the reattachment 
edge, in the case of the steady flow no vortices are observed. Gharib applied variable 
forcing at various frequencies. Spectral analysis of the response-velocity fluctuations 
indicated that the level of shear-layer response at  all the frequencies increased with 
the forcing power. But, when the forcing reached a threshold level, resonance appeared 
at the forcing frequency in which the shear-layer satisfies the phase criterion (L = An). 
When he increased the length of the cavity, Gharib observed that the resonance peak 
appeared at a lower forcing level, an indication that the threshold level decreases as 
the length of the cavity increases. 

Gharib (1983) concludes that it is logical to propose that, as the cavity length 
increases, the threshold level decreases to such an extent that a flow background 
frequency, which satisfies the phase criterion and has sufficient amplitude, will 
initiate the self-sustained oscillation. 

It is concluded then that, in view of the present analysis, it seems that the 
oscillations are initiated and sustained by the periodic pressure pulses induced by the 
vortex-edge interaction, provided that the geometry of the edge is such that the 
amplitude of the pressure pulses is sufficient. 

We hope that the present analysis has introduced new evidence for the role of the 
vortex-edge interaction in the mechanism of the self-sustained oscillations of 
cavity-type flows, and that it will stimulate further experimental research in 
appropriate laboratories. It could also prove useful for the design of cavity-type 
configurations free of oscillations. 

The author would like to thank Dipl. Eng. D. Kazandzis, former student at  the 
University of Patras, for his assistance in the evaluation of integral (8). Thanks are 
also due to Mr E. Alexandridis (M.Sc.) of KETA for his pertinent advice on using 
the PRIME 550 computer and to Dr X. Aslanoglou for his assistance in preparing 
the graphics. 
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